Open WebUI虽然内置了 Web Search 功能,而且能够调用 Tavily,但是效果比较一般。在社区提供的 Tool 中,victor1203提供了一个可用的 Tavily 搜索工具,Web Search with Tavily. 不过现时 Tavily 的 API 有所变动,所以需要进行一些修改。
我的 Open WebUI 是使用 docker 部署的,为了能够使用 tavily-python,需要进入 docker 容器并安装相应的依赖。步骤:
- 进入 docker 容器:
docker exec -it openwebui bash
- 安装依赖:
d open_webui && pip install tavily-python
- 退出 docker 容器:
exit
- 重启 docker 容器:
docker restart openwebui
然后打开“工作空间”,点击 “工具”,新建一个工具,填入以下代码:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
"""
title: Tavily Search Tool
author: victor1203
maintainer: sievelau
description: This tool performs internet searches using the Tavily API to get real-time information with advanced context and Q&A capabilities
required_open_webui_version: 0.4.0
requirements: tavily-python
version: 1.1.0
licence: MIT
"""
from pydantic import BaseModel, Field
from typing import Optional, Literal
from tavily import TavilyClient
class Tools:
def __init__(self):
"""Initialize the Tool with valves."""
self.valves = self.Valves()
self._client = None
class Valves(BaseModel):
tavily_api_key: str = Field(
"", description="Your Tavily API key (starts with 'tvly-')"
)
search_depth: str = Field(
"basic", description="Search depth - basic or advanced"
)
include_answer: bool = Field(
True, description="Include an AI-generated answer in the response"
)
max_results: int = Field(
5, description="Maximum number of search results to return (1-10)"
)
def _get_client(self) -> TavilyClient:
"""Get or create Tavily client instance."""
if self._client is None:
self._client = TavilyClient(api_key=self.valves.tavily_api_key)
return self._client
async def search(self, query: str, __event_emitter__=None) -> str:
"""
Perform a Tavily search and return the results.
Args:
query: The search query string
search_type: Type of search to perform:
- regular: Standard search with full results
- context: Optimized for RAG applications
- qa: Quick answer to a specific question
Returns:
A formatted string containing the search results
"""
try:
# Input validation
if not self.valves.tavily_api_key:
return "Error: Tavily API key not configured. Please set up the API key in the tool settings."
# Emit status that search is starting
if __event_emitter__:
await __event_emitter__(
{
"type": "status",
"data": {
"description": f"Initiating Tavily search...",
"done": False,
},
}
)
client = self._get_client()
# Perform the search based on type
if __event_emitter__:
await __event_emitter__(
{
"type": "status",
"data": {
"description": "Fetching search results...",
"done": False,
},
}
)
result = client.search(
query=query,
search_depth=self.valves.search_depth,
include_answer=self.valves.include_answer,
max_results=self.valves.max_results,
)
# Format regular search results
formatted_results = ""
# Include AI answer if available
if self.valves.include_answer and "answer" in result:
formatted_results += f"AI Answer:\n{result['answer']}\n\n"
# Add search results
formatted_results += "Tavily Search Results:\n\n"
for i, item in enumerate(
result.get("results", [])[: self.valves.max_results], 1
):
formatted_results += f"{i}. {item.get('title', 'No title')}\n"
formatted_results += f"URL: {item.get('url', 'No URL')}\n"
formatted_results += f"Content: {item.get('content', 'No content')}\n"
formatted_results += f"Relevance Score: {item.get('score', '0.0')}\n"
formatted_results += "\n"
if __event_emitter__:
await __event_emitter__(
{
"type": "status",
"data": {
"description": "Search completed successfully",
"done": True,
},
}
)
return formatted_results
except Exception as e:
error_message = f"An error occurred while performing the search: {str(e)}"
if __event_emitter__:
await __event_emitter__(
{
"type": "status",
"data": {"description": error_message, "done": True},
}
)
return error_message
具体的修改是:
- 删除了 search type,因为现在只有 search,具体的类型通过
topic
来指定,但是作为 genereal search,我们不需要这个参数。 - 把 formatted_results 的引导内容添加上
Tavily
这个关键词,方便 RAG Template 中指导模型 - 删除了 snippet,转而增加了 content 来指定搜索结果的内容
- 增加了 score,方便后面更改 RAG Template 来告诉模型根据此字段来判断相关度
之后,在工作空间的“模型”中新建一个 WebSearch,工具勾上我们刚才新增的这个tool,这就做好了一个 agent。
但是我们还需要更改 RAG Template。默认的 template 是设计成与内置的 web search 进行配合的,但是我们用 tool 来传递搜索结果会变成只有一个 source id,导致引用不正确。所以需要在 guideline 增加两条:
- If the context contains "Tavily Search Results", you should not include inline citation. You should indicate the source url in this syntax: [Title](URL). Make sure you are using markdown link syntax and take care of the quotes. This rule take precedence over the previous rule about source_id.
- If the context contains "Tavily Search Results", you should determine result quality by the Relevance Score.
可见为什么之前要把 formatted_results 添加一个 Tavily 关键词,这样才能指定 apply 我们新增的这两条规则。第一条规则是为了防止模型按照传统的思路来生成引用,在网络搜索这个情境下,直接用 markdown 的 link 语法就能够很好地引用来源了。第二条规则是让模型知道该用 Relevance Score 来评估搜索结果的质量,从而更好地生成高质量的回答。
另外,根据实验,context length 得去到 8192 才能比较好地使用搜索结果。我试了几次,5个搜索结果的情况下 Tavily 返回的 content 总内容大概 7k 到 8k 之间。QwQ 用 IQ3_XXS 在 ollama 上跑,n_ctx 设置到 10000 刚好能够塞进16G显存,8k 做 prompt,2k 留给 n_predict,刚好。
总的 template 如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
### Task:
Respond to the user query using the provided context, incorporating inline citations in the format [source_id] **only when the <source_id> tag is explicitly provided** in the context.
### Guidelines:
- If you don't know the answer, clearly state that.
- If uncertain, ask the user for clarification.
- Respond in the same language as the user's query.
- If the context is unreadable or of poor quality, inform the user and provide the best possible answer.
- If the answer isn't present in the context but you possess the knowledge, explain this to the user and provide the answer using your own understanding.
- **Only include inline citations using [source_id] (e.g., [1], [2]) when a `<source_id>` tag is explicitly provided in the context.**
- Do not cite if the <source_id> tag is not provided in the context.
- Do not use XML tags in your response.
- Ensure citations are concise and directly related to the information provided.
- If the context contains "Tavily Search Results", you should not include inline citation. You should indicate the source url in this syntax: [Title](URL). Make sure you are using markdown link syntax and take care of the quotes. This rule take precedence over the previous rule about source_id.
- If the context contains "Tavily Search Results", you should determine result quality by the Relevance Score.
### Example of Citation:
If the user asks about a specific topic and the information is found in "whitepaper.pdf" with a provided <source_id>, the response should include the citation like so:
* "According to the study, the proposed method increases efficiency by 20% [whitepaper.pdf]."
If no <source_id> is present, the response should omit the citation.
### Output:
Provide a clear and direct response to the user's query, including inline citations in the format [source_id] only when the <source_id> tag is present in the context.
<context>
{{CONTEXT}}
</context>
<user_query>
{{QUERY}}
</user_query>